Show simple item record

dc.contributor.authorFu, Zhenghao
dc.contributor.authorGrant, Christopher
dc.contributor.authorKrawiec, Dominika M.
dc.contributor.authorLi, Aobo
dc.contributor.authorWinslow, Lindley A.
dc.date.accessioned2024-07-10T19:24:17Z
dc.date.available2024-07-10T19:24:17Z
dc.date.issued2024-06-27
dc.identifier.issn1434-6052
dc.identifier.urihttps://hdl.handle.net/1721.1/155583
dc.description.abstractThe next generation of searches for neutrinoless double beta decay (0𝜈𝛽𝛽 ) are poised to answer deep questions on the nature of neutrinos and the source of the Universe’s matter–antimatter asymmetry. They will be looking for event rates of less than one event per ton of instrumented isotope per year. To claim discovery, accurate and efficient simulations of detector events that mimic 0𝜈𝛽𝛽 is critical. Traditional Monte Carlo (MC) simulations can be supplemented by machine-learning-based generative models. This work describes the performance of generative models that we designed for monolithic liquid scintillator detectors like KamLAND to produce accurate simulation data without a predefined physics model. We present their current ability to recover low-level features and perform interpolation. In the future, the results of these generative models can be used to improve event classification and background rejection by providing high-quality abundant generated data.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1140/epjc/s10052-024-12980-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleGenerative models for simulation of KamLAND-Zenen_US
dc.typeArticleen_US
dc.identifier.citationFu, Z., Grant, C., Krawiec, D.M. et al. Generative models for simulation of KamLAND-Zen. Eur. Phys. J. C 84, 651 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.relation.journalThe European Physical Journal Cen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-06-30T03:10:44Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-06-30T03:10:44Z
mit.journal.volume84en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record