MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyticity and the Unruh effect: a study of local modular flow

Author(s)
Sorce, Jonathan
Thumbnail
Download13130_2024_Article_24417.pdf (657.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The Unruh effect can be formulated as the statement that the Minkowski vacuum in a Rindler wedge has a boost as its modular flow. In recent years, other examples of states with geometrically local modular flow have played important roles in understanding energy and entropy in quantum field theory and quantum gravity. Here I initiate a general study of the settings in which geometric modular flow can arise, showing (i) that any geometric modular flow must be a conformal symmetry of the background spacetime, and (ii) that in a well behaved class of “weakly analytic” states, geometric modular flow must be future-directed. I further argue that if a geometric transformation is conformal but not isometric, then it can only be realized as modular flow in a conformal field theory. Finally, I discuss a few settings in which converse results can be shown — i.e., settings in which a state can be constructed whose modular flow reproduces a given vector field.
Date issued
2024-09-09
URI
https://hdl.handle.net/1721.1/156880
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Sorce, J. Analyticity and the Unruh effect: a study of local modular flow. J. High Energ. Phys. 2024, 40 (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.