Show simple item record

dc.contributor.authorPostelnicu, Eveline
dc.contributor.authorWen, Rui-Tao
dc.contributor.authorMa, Danhao
dc.contributor.authorWang, Baoming
dc.contributor.authorWada, Kazumi
dc.contributor.authorMichel, Jurgen
dc.contributor.authorKimerling, Lionel C
dc.date.accessioned2024-09-19T15:15:23Z
dc.date.available2024-09-19T15:15:23Z
dc.date.issued2023-09-04
dc.identifier.urihttps://hdl.handle.net/1721.1/156902
dc.description.abstractHeterogeneous integration of diverse materials structures is critical to the scaling of electronic and photonic integrated circuits. For a model system of Ge-on-Si, we experimentally examine the roles of lattice misfit and thermal expansion misfit in determining the residual strain in as-grown and annealed heteroepitaxial films. We present data for Ge-on-Si growth from 400 to 730 °C followed by heat treatment from 500–900 °C. We show that strain fluctuations of 5.02% enable misfit dislocation formation, and we propose a comprehensive model for the conversion of compressive misfit strain to tensile elastic strain. The model is expressed in terms of three regimes: (1) misfit control for the low temperature growth regime at 400 °C; (2) point defect control via annealing in the point defect recovery regime at 500–650 °C; and (3) thermal expansion control for growth or anneal at T > 650 °C in the dislocation recovery regime. Growth from 400 to 730 °C exhibits near complete misfit strain relief by misfit dislocations leaving a consistent residual compressive strain of 0.09%. Growth at 400 °C followed by post growth heat treatment at 600 °C results in vertical threading dislocation density reduction via a point defect-mediated climb mechanism that gives minimal strain relief. Anneal above 650 °C promotes strain relief by dislocation glide. Temperature excursions at T > 730 °C followed by cooling to room temperature yield plastic strain in the Ge film that cannot be further relieved by thermal expansion misfit accommodation. Growth at 400–730 °C retains a residual compressive strain that represents the nucleation threshold for misfit dislocations.en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0153231en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAIP Publishingen_US
dc.titleOrigin of residual strain in heteroepitaxial filmsen_US
dc.typeArticleen_US
dc.identifier.citationEveline Postelnicu, Rui-Tao Wen, Danhao Ma, Baoming Wang, Kazumi Wada, Jurgen Michel, Lionel C. Kimerling; Origin of residual strain in heteroepitaxial films. Appl. Phys. Lett. 4 September 2023; 123 (10): 102103.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-09-19T15:07:35Z
dspace.orderedauthorsPostelnicu, E; Wen, R-T; Ma, D; Wang, B; Wada, K; Michel, J; Kimerling, LCen_US
dspace.date.submission2024-09-19T15:07:37Z
mit.journal.volume123en_US
mit.journal.issue10en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record