MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic event-triggered integrated task and motion planning for process-aware source seeking

Author(s)
Li, Yingke; Hou, Mengxue; Zhou, Enlu; Zhang, Fumin
Thumbnail
Download10514_2024_Article_10177.pdf (2.434Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.
Date issued
2024-10-12
URI
https://hdl.handle.net/1721.1/157398
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Autonomous Robots
Publisher
Springer US
Citation
Li, Y., Hou, M., Zhou, E. et al. Dynamic event-triggered integrated task and motion planning for process-aware source seeking. Auton Robot 48, 23 (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.