Show simple item record

dc.contributor.authorLi, Yingke
dc.contributor.authorHou, Mengxue
dc.contributor.authorZhou, Enlu
dc.contributor.authorZhang, Fumin
dc.date.accessioned2024-10-21T20:31:34Z
dc.date.available2024-10-21T20:31:34Z
dc.date.issued2024-10-12
dc.identifier.urihttps://hdl.handle.net/1721.1/157398
dc.description.abstractThe process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10514-024-10177-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleDynamic event-triggered integrated task and motion planning for process-aware source seekingen_US
dc.typeArticleen_US
dc.identifier.citationLi, Y., Hou, M., Zhou, E. et al. Dynamic event-triggered integrated task and motion planning for process-aware source seeking. Auton Robot 48, 23 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalAutonomous Robotsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-10-13T03:12:00Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-10-13T03:12:00Z
mit.journal.volume48en_US
mit.journal.issue23en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record