MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria

Author(s)
Sekar, Karthik; Rusconi, Roberto; Sauls, John T.; Fuhrer, Tobias; Noor, Elad; Nguyen, Jen; Fernandez, Vicente I.; Buffing, Marieke F.; Berney, Michael; Jun, Suckjoon; Stocker, Roman; Sauer, Uwe; ... Show more Show less
Thumbnail
Download44320_2018_Article_BFMSB188623.pdf (8.375Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In natural environments, microbes are typically non‐dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient‐rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real‐time metabolomics and microfluidic single‐cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non‐dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease‐dependent degradation. Lag time changed in model‐congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
Date issued
2018-11-05
URI
https://hdl.handle.net/1721.1/157466
Department
Massachusetts Institute of Technology. Microbiology Graduate Program
Journal
Molecular Systems Biology
Publisher
Nature Publishing Group UK
Citation
Mol Syst Biol. (2018) 14: e8623
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.