Show simple item record

dc.contributor.authorSekar, Karthik
dc.contributor.authorRusconi, Roberto
dc.contributor.authorSauls, John T.
dc.contributor.authorFuhrer, Tobias
dc.contributor.authorNoor, Elad
dc.contributor.authorNguyen, Jen
dc.contributor.authorFernandez, Vicente I.
dc.contributor.authorBuffing, Marieke F.
dc.contributor.authorBerney, Michael
dc.contributor.authorJun, Suckjoon
dc.contributor.authorStocker, Roman
dc.contributor.authorSauer, Uwe
dc.date.accessioned2024-11-04T18:39:18Z
dc.date.available2024-11-04T18:39:18Z
dc.date.issued2018-11-05
dc.identifier.urihttps://hdl.handle.net/1721.1/157466
dc.description.abstractIn natural environments, microbes are typically non‐dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient‐rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real‐time metabolomics and microfluidic single‐cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non‐dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease‐dependent degradation. Lag time changed in model‐congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.en_US
dc.publisherNature Publishing Group UKen_US
dc.relation.isversionofhttps://doi.org/10.15252/msb.20188623en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Group UKen_US
dc.titleSynthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteriaen_US
dc.typeArticleen_US
dc.identifier.citationMol Syst Biol. (2018) 14: e8623en_US
dc.contributor.departmentMassachusetts Institute of Technology. Microbiology Graduate Programen_US
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-10-27T18:17:42Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2024-10-27T18:17:42Z
mit.journal.volume14en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record