MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying concentration distributions in redox flow batteries with neutron radiography

Author(s)
Jacquemond, Rémy Richard; van der Heijden, Maxime; Boz, Emre Burak; Carreón Ruiz, Eric Ricardo; Greco, Katharine Virginia; Kowalski, Jeffrey Adam; Muñoz Perales, Vanesa; Brushett, Fikile Richard; Nijmeijer, Kitty; Boillat, Pierre; Forner-Cuenca, Antoni; ... Show more Show less
Thumbnail
DownloadPublished version (3.977Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte. To resolve the concentration profiles across the electrodes, we employ an in-plane imaging configuration and correlate the concentration profiles to cell performance with polarization experiments under different operating conditions. Finally, we use time-of-flight neutron imaging to deconvolute concentrations of active species and supporting electrolyte during operation. Using this approach, we evaluate the influence of cell polarity, voltage bias and flow rate on the concentration distribution within the flow cell and correlate these with the macroscopic performance, thus obtaining an unprecedented level of insight into reactive mass transport. Ultimately, this diagnostic technique can be applied to a range of (electro)chemical technologies and may accelerate the development of new materials and reactor designs.</jats:p>
Date issued
2024-09-05
URI
https://hdl.handle.net/1721.1/157754
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Jacquemond, R.R., van der Heijden, M., Boz, E.B. et al. Quantifying concentration distributions in redox flow batteries with neutron radiography. Nat Commun 15, 7434 (2024).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.