Show simple item record

dc.contributor.authorJacquemond, Rémy Richard
dc.contributor.authorvan der Heijden, Maxime
dc.contributor.authorBoz, Emre Burak
dc.contributor.authorCarreón Ruiz, Eric Ricardo
dc.contributor.authorGreco, Katharine Virginia
dc.contributor.authorKowalski, Jeffrey Adam
dc.contributor.authorMuñoz Perales, Vanesa
dc.contributor.authorBrushett, Fikile Richard
dc.contributor.authorNijmeijer, Kitty
dc.contributor.authorBoillat, Pierre
dc.contributor.authorForner-Cuenca, Antoni
dc.date.accessioned2024-12-04T20:49:47Z
dc.date.available2024-12-04T20:49:47Z
dc.date.issued2024-09-05
dc.identifier.urihttps://hdl.handle.net/1721.1/157754
dc.description.abstractThe continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte. To resolve the concentration profiles across the electrodes, we employ an in-plane imaging configuration and correlate the concentration profiles to cell performance with polarization experiments under different operating conditions. Finally, we use time-of-flight neutron imaging to deconvolute concentrations of active species and supporting electrolyte during operation. Using this approach, we evaluate the influence of cell polarity, voltage bias and flow rate on the concentration distribution within the flow cell and correlate these with the macroscopic performance, thus obtaining an unprecedented level of insight into reactive mass transport. Ultimately, this diagnostic technique can be applied to a range of (electro)chemical technologies and may accelerate the development of new materials and reactor designs.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-024-50120-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Natureen_US
dc.titleQuantifying concentration distributions in redox flow batteries with neutron radiographyen_US
dc.typeArticleen_US
dc.identifier.citationJacquemond, R.R., van der Heijden, M., Boz, E.B. et al. Quantifying concentration distributions in redox flow batteries with neutron radiography. Nat Commun 15, 7434 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-12-04T20:43:47Z
dspace.orderedauthorsJacquemond, RR; van der Heijden, M; Boz, EB; Carreón Ruiz, ER; Greco, KV; Kowalski, JA; Muñoz Perales, V; Brushett, FR; Nijmeijer, K; Boillat, P; Forner-Cuenca, Aen_US
dspace.date.submission2024-12-04T20:43:52Z
mit.journal.volume15en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record