MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation

Author(s)
Nguyen, Ngoc C.; Peraire, Jaime
Download10915_2024_2604_ReferencePDF.pdf (Embargoed until: 2025-06-27, 7.351Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.
Date issued
2024-06-27
URI
https://hdl.handle.net/1721.1/159431
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Scientific Computing
Publisher
Springer US
Citation
Nguyen, N.C., Peraire, J. Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation. J Sci Comput 100, 44 (2024).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.