Show simple item record

dc.contributor.authorNguyen, Ngoc C.
dc.contributor.authorPeraire, Jaime
dc.date.accessioned2025-06-17T20:48:54Z
dc.date.available2025-06-17T20:48:54Z
dc.date.issued2024-06-27
dc.identifier.urihttps://hdl.handle.net/1721.1/159431
dc.description.abstractWe introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10915-024-02604-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleHybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equationen_US
dc.typeArticleen_US
dc.identifier.citationNguyen, N.C., Peraire, J. Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation. J Sci Comput 100, 44 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalJournal of Scientific Computingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:48:15Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:48:15Z
mit.journal.volume100en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record