MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Resource Circularity in Aluminum Production through Nanofiltration of Waste Cryolite

Author(s)
Lee, Trent R.; Foo, Zi Hao; Nguyen, Vinn; Lienhard, John H
DownloadLEE ACS SCE 2025 manuscript and supplemental information.pdf (Embargoed until: 2026-01-06, 10.03Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This study presents a novel approach to the selective separation of aluminum from waste cryolite electrolyte with two nanofiltration membranes: a conventional polyamide membrane and a membrane coated with a polyelectrolyte layer. Utilizing transmission electron microscopy and Fourier transform infrared spectroscopy, we find that the polyelectrolyte coating significantly increases the density of positively charged ammonium groups on the membrane surface, thereby enhancing the Donnan exclusion of aluminum ions. Notably, the polyelectrolyte coating enhances the sodium/aluminum separation factor by 55%. Our experimental results demonstrate that the coated membrane sustains high aluminum rejection rates, averaging 99.1%, while permitting substantial permeation of sodium, lithium, and potassium ions. This selective permeability is pronounced at lower pH levels, where the sodium/aluminum separation factor peaks at 102.02 for chloride-rich waste cryolite. Our process modeling using the Donnan steric pore model with dielectric exclusion substantiates the practical viability of Donnan-enhanced nanofiltration for processing waste cryolite. Our module-scale analysis indicates that the efficient aluminum concentration in the retentate, achieving a sodium/aluminum ratio of approximately 2.6, is viable for upcycling cryolite electrolyte and promoting a circular aluminum economy. Furthermore, the aluminum-depleted permeate, with aluminum cationic composition as low as 0.00194%, makes ample progress toward a benignly disposable effluent, reducing the aluminum industry’s environmental footprint.
Date issued
2025-01-06
URI
https://hdl.handle.net/1721.1/160325
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Center for Computational Science and Engineering
Journal
ACS Sustainable Chemistry & Engineering
Publisher
American Chemical Society
Citation
Trent R. Lee, Zi Hao Foo, Vinn Nguyen, and John H. Lienhard. ACS Sustainable Chemistry & Engineering 2025 13 (2), 846-858.
Version: Author's final manuscript
ISSN
2168-0485
2168-0485

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.