Show simple item record

dc.contributor.authorLee, Trent R.
dc.contributor.authorFoo, Zi Hao
dc.contributor.authorNguyen, Vinn
dc.contributor.authorLienhard, John H
dc.date.accessioned2025-07-14T20:46:12Z
dc.date.available2025-07-14T20:46:12Z
dc.date.issued2025-01-06
dc.identifier.issn2168-0485
dc.identifier.issn2168-0485
dc.identifier.urihttps://hdl.handle.net/1721.1/160325
dc.description.abstractThis study presents a novel approach to the selective separation of aluminum from waste cryolite electrolyte with two nanofiltration membranes: a conventional polyamide membrane and a membrane coated with a polyelectrolyte layer. Utilizing transmission electron microscopy and Fourier transform infrared spectroscopy, we find that the polyelectrolyte coating significantly increases the density of positively charged ammonium groups on the membrane surface, thereby enhancing the Donnan exclusion of aluminum ions. Notably, the polyelectrolyte coating enhances the sodium/aluminum separation factor by 55%. Our experimental results demonstrate that the coated membrane sustains high aluminum rejection rates, averaging 99.1%, while permitting substantial permeation of sodium, lithium, and potassium ions. This selective permeability is pronounced at lower pH levels, where the sodium/aluminum separation factor peaks at 102.02 for chloride-rich waste cryolite. Our process modeling using the Donnan steric pore model with dielectric exclusion substantiates the practical viability of Donnan-enhanced nanofiltration for processing waste cryolite. Our module-scale analysis indicates that the efficient aluminum concentration in the retentate, achieving a sodium/aluminum ratio of approximately 2.6, is viable for upcycling cryolite electrolyte and promoting a circular aluminum economy. Furthermore, the aluminum-depleted permeate, with aluminum cationic composition as low as 0.00194%, makes ample progress toward a benignly disposable effluent, reducing the aluminum industry’s environmental footprint.en_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acssuschemeng.4c07268en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAuthoren_US
dc.titleEnhancing Resource Circularity in Aluminum Production through Nanofiltration of Waste Cryoliteen_US
dc.typeArticleen_US
dc.identifier.citationTrent R. Lee, Zi Hao Foo, Vinn Nguyen, and John H. Lienhard. ACS Sustainable Chemistry & Engineering 2025 13 (2), 846-858.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineeringen_US
dc.relation.journalACS Sustainable Chemistry & Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1021/acssuschemeng.4c07268
dspace.date.submission2025-07-13T19:25:50Z
mit.journal.volume13en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record