MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incorporating Deep Learning Into System Dynamics: Amortized Bayesian Inference for Scalable Likelihood‐Free Parameter Estimation

Author(s)
Rahmandad, Hazhir; Akhavan, Ali; Jalali, Mohammad S
Thumbnail
DownloadPublished version (15.45Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Estimating parameters and their credible intervals for complex system dynamics models is challenging but critical to continu-ous model improvement and reliable communication with an increasing fraction of audiences. The purpose of this study is tointegrate Amortized Bayesian Inference (ABI) methods with system dynamics. Utilizing Neural Posterior Estimation (NPE), wetrain neural networks using synthetic data (pairs of ground truth parameters and outcome time series) to estimate parameters ofsystem dynamics models. We apply this method to two example models: a simple Random Walk model and a moderately complexSEIRb model. We show that the trained neural networks can output the posterior for parameters instantly given new unseentime series data. Our analysis highlights the potential of ABI to facilitate a principled, scalable, and likelihood-free inferenceworkflow that enhance the integration of models of complex systems with data. Accompanying code streamlines application todiverse system dynamics models.
Date issued
2025-01-21
URI
https://hdl.handle.net/1721.1/163367
Department
Sloan School of Management
Journal
System Dynamics Review
Publisher
Wiley
Citation
Rahmandad, H., Akhavan, A. and Jalali, M.S. (2025), Incorporating Deep Learning Into System Dynamics: Amortized Bayesian Inference for Scalable Likelihood-Free Parameter Estimation. Syst. Dyn. Rev., 41: e1798.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.