Show simple item record

dc.contributor.authorRahmandad, Hazhir
dc.contributor.authorAkhavan, Ali
dc.contributor.authorJalali, Mohammad S
dc.date.accessioned2025-10-22T16:57:11Z
dc.date.available2025-10-22T16:57:11Z
dc.date.issued2025-01-21
dc.identifier.urihttps://hdl.handle.net/1721.1/163367
dc.description.abstractEstimating parameters and their credible intervals for complex system dynamics models is challenging but critical to continu-ous model improvement and reliable communication with an increasing fraction of audiences. The purpose of this study is tointegrate Amortized Bayesian Inference (ABI) methods with system dynamics. Utilizing Neural Posterior Estimation (NPE), wetrain neural networks using synthetic data (pairs of ground truth parameters and outcome time series) to estimate parameters ofsystem dynamics models. We apply this method to two example models: a simple Random Walk model and a moderately complexSEIRb model. We show that the trained neural networks can output the posterior for parameters instantly given new unseentime series data. Our analysis highlights the potential of ABI to facilitate a principled, scalable, and likelihood-free inferenceworkflow that enhance the integration of models of complex systems with data. Accompanying code streamlines application todiverse system dynamics models.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/sdr.1798en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceWileyen_US
dc.titleIncorporating Deep Learning Into System Dynamics: Amortized Bayesian Inference for Scalable Likelihood‐Free Parameter Estimationen_US
dc.typeArticleen_US
dc.identifier.citationRahmandad, H., Akhavan, A. and Jalali, M.S. (2025), Incorporating Deep Learning Into System Dynamics: Amortized Bayesian Inference for Scalable Likelihood-Free Parameter Estimation. Syst. Dyn. Rev., 41: e1798.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.relation.journalSystem Dynamics Reviewen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-22T16:45:58Z
dspace.orderedauthorsRahmandad, H; Akhavan, A; Jalali, MSen_US
dspace.date.submission2025-10-22T16:46:18Z
mit.journal.volume41en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record