Show simple item record

dc.contributor.authorCassa, Christopher A.
dc.contributor.authorSchmidt, Brian
dc.contributor.authorKohane, Isaac
dc.contributor.authorMandl, Kenneth D.
dc.date.accessioned2010-03-09T20:17:19Z
dc.date.available2010-03-09T20:17:19Z
dc.date.issued2008-07
dc.date.submitted2007-11
dc.identifier.issn1755-8794
dc.identifier.urihttp://hdl.handle.net/1721.1/52440
dc.description.abstractBackground Genomic sequencing of SNPs is increasingly prevalent, though the amount of familial information these data contain has not been quantified. Methods We provide a framework for measuring the risk to siblings of a patient's SNP genotype disclosure, and demonstrate that sibling SNP genotypes can be inferred with substantial accuracy. Results Extending this inference technique, we determine that a very low number of matches at commonly varying SNPs is sufficient to confirm sib-ship, demonstrating that published sequence data can reliably be used to derive sibling identities. Using HapMap trio data, at SNPs where one child is homozygotic major, with a minor allele frequency ≤ 0.20, (N = 452684, 65.1%) we achieve 91.9% inference accuracy for sibling genotypes. Conclusion These findings demonstrate that substantial discrimination and privacy risks arise from use of inferred familial genomic data.en
dc.description.sponsorshipNational Institutes of Health (grant R01-LM009375-01A1)en
dc.description.sponsorshipNational Library of Medicineen
dc.language.isoen_US
dc.publisherBioMed Central Ltd.en
dc.relation.isversionofhttp://dx.doi.org/10.1186/1755-8794-1-32en
dc.rightsCreative Commons Attributionen
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/en
dc.sourceBioMed Centralen
dc.titleMy sister's keeper?: genomic research and the identifiability of siblingsen
dc.typeArticleen
dc.identifier.citationCassa, Christopher et al. “My sister's keeper?: genomic research and the identifiability of siblings.” BMC Medical Genomics 1.1 (2008): 32.en
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverCassa, Christopher A.
dc.contributor.mitauthorCassa, Christopher A.
dc.contributor.mitauthorSchmidt, Brian
dc.relation.journalBMC Medical Genomicsen
dc.eprint.versionFinal published versionen
dc.identifier.pmid18655711
dc.type.urihttp://purl.org/eprint/type/JournalArticleen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
dspace.orderedauthorsCassa, Christopher A; Schmidt, Brian; Kohane, Isaac S; Mandl, Kenneth Den
mit.licensePUBLISHER_CCen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record