Application of self-tuning Gaussian networks for control of civil structures equipped with magnetorheological dampers
Author(s)
Laflamme, Simon; Connor, Jerome J.
DownloadLaflamme-2009-Application of self-tuning Gaussian networks for control of civil structures equipped with magnetorheological dampers.pdf (313.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
This paper proposes an adaptive neural network composed of Gaussian radial functions for mapping the behavior of civil structures controlled with magnetorheological dampers. The online adaptation takes into account the limited force output of the semi-active dampers using a sliding mode controller, as their reaction forces are state dependent. The structural response and the actual forces from the dampers are used to adapt the Gaussian network by tuning the radial function widths, centers, and weights. In order to accelerate convergence of the Gaussian radial function network during extraordinary external excitations, the learning rates are also adaptive. The proposed controller is simulated using three types of earthquakes: near-field, mid-field, and far-field. Results show that the neural controller is effective for controlling a structure equipped with a magnetorheological damper, as it achieves a performance similar to the passiveon strategy while requiring as low as half the voltage input.
Date issued
2009-04Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Proceedings of SPIE--the International Society for Optical Engineering
Publisher
Society of Photo-Optical Instrumentation Engineers
Citation
Laflamme, Simon, and Jerome J. Connor. “Application of self-tuning Gaussian networks for control of civil structures equipped with magnetorheological dampers.” Active and Passive Smart Structures and Integrated Systems 2009. Ed. Mehdi Ahmadian & Mehrdad N. Ghasemi-Nejhad. San Diego, CA, USA: SPIE, 2009. 72880M-12. © 2009 SPIE
Version: Final published version
Other identifiers
SPIE CID: 72880M-12
ISSN
0277-786X