dc.contributor.author | Marino, Richard M. | |
dc.contributor.author | Richardson, Jonathan M. | |
dc.contributor.author | Garnier, Robert | |
dc.contributor.author | Ireland, David B. | |
dc.contributor.author | Bickmeier, Laura J. | |
dc.contributor.author | Siracusa, Christina M. | |
dc.contributor.author | Quinn, Patrick M. | |
dc.date.accessioned | 2010-03-17T15:08:59Z | |
dc.date.available | 2010-03-17T15:08:59Z | |
dc.date.issued | 2009-05 | |
dc.date.submitted | 2009-04 | |
dc.identifier.issn | 0277-786X | |
dc.identifier.other | SPIE CID: 73230H-10 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/52655 | |
dc.description.abstract | Laser-based remote sensing is undergoing a remarkable advance due to novel technologies developed at MIT Lincoln Laboratory. We have conducted recent experiments that have demonstrated the utility of detecting and imaging low-density aerosol clouds. The Mobile Active Imaging LIDAR (MAIL) system uses a Lincoln Laboratory-developed microchip laser to transmit short pulses at 14-16 kHz Pulse Repetition Frequency (PRF), and a Lincoln Laboratory-developed 32x32 Geiger-mode Avalanche-Photodiode Detector (GmAPD) array for singlephoton counting and ranging. The microchip laser is a frequency-doubled passively Q-Switched Nd:YAG laser providing an average transmitted power of less than 64 milli-Watts. When the avalanche photo-diodes are operated in the Geiger-mode, they are reverse-biased above the breakdown voltage for a time that corresponds to the effective range-gate or range-window of interest. The time-of-flight, and therefore range, is determined from the measured laser transmit time and the digital time value from each pixel. The optical intensity of the received pulse is not measured because the GmAPD is saturated by the electron avalanche. Instead, the reflectivity of the scene, or relative density of aerosols in this case, is determined from the temporally and/or spatially analyzed detection statistics. | en |
dc.description.sponsorship | United States Army ( Air Force Contract FA8721-05-C-0002) | en |
dc.language.iso | en_US | |
dc.publisher | Society of Photo-optical Instrumentation Engineers | en |
dc.relation.isversionof | http://dx.doi.org/10.1117/12.819179 | en |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en |
dc.source | SPIE | en |
dc.title | Photon-Counting Lidar for Aerosol Detection and 3-D Imaging | en |
dc.type | Article | en |
dc.identifier.citation | Marino, Richard M. et al. “Photon-counting lidar for aerosol detection and 3D imaging.” Laser Radar Technology and Applications XIV. Ed. Monte D. Turner & Gary W. Kamerman. Orlando, FL, USA: SPIE, 2009. 73230H-10. © 2009 SPIE | en |
dc.contributor.department | Lincoln Laboratory | en_US |
dc.contributor.approver | Marino, Richard M. | |
dc.contributor.mitauthor | Marino, Richard M. | |
dc.contributor.mitauthor | Richardson, Jonathan M. | |
dc.contributor.mitauthor | Garnier, Robert | |
dc.contributor.mitauthor | Ireland, David B. | |
dc.contributor.mitauthor | Bickmeier, Laura J. | |
dc.contributor.mitauthor | Siracusa, Christina M. | |
dc.contributor.mitauthor | Quinn, Patrick M. | |
dc.relation.journal | Proceedings of SPIE--the International Society for Optical Engineering | en |
dc.eprint.version | Final published version | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en |
dspace.orderedauthors | Marino, Richard M.; Richardson, Jonathan; Garnier, Robert; Ireland, David; Bickmeier, Laura; Siracusa, Christina; Quinn, Patrick | en |
mit.license | PUBLISHER_POLICY | en |
mit.metadata.status | Complete | |