Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength
Author(s)
Levitov, Leonid; Abanin, Dmitry A.; Skachko, I.; Du, X.; Andrei, E. Y.
DownloadAbanin-2010-Fractional quantum H.pdf (226.7Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10 K. The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we address the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a general method, based on the conformal invariance of two-dimensional magnetotransport, and employ it to analyze the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized ν=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a tool for the studies of quantum transport in suspended graphene and other nanoscale systems.
Date issued
2010-03Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review B
Publisher
American Physical Society
Citation
Abanin, D. A. et al. “Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength.” Physical Review B 81.11 (2010): 115410. © 2010 The American Physical Society.
Version: Final published version
ISSN
1098-0121