Show simple item record

dc.contributor.authorRoy, Nicholas
dc.contributor.authorPrentice, Samuel James
dc.date.accessioned2010-09-29T14:49:03Z
dc.date.available2010-09-29T14:49:03Z
dc.date.issued2009-07
dc.identifier.issn0278-3649
dc.identifier.issn1741-3176
dc.identifier.urihttp://hdl.handle.net/1721.1/58752
dc.description.abstractWhen a mobile agent does not known its position perfectly, incorporating the predicted uncertainty of future position estimates into the planning process can lead to substantially better motion performance. However, planning in the space of probabilistic position estimates, or belief space, can incur substantial computational cost. In this paper, we show that planning in belief space can be done efficiently for linear Gaussian systems by using a factored form of the covariance matrix. This factored form allows several prediction and measurement steps to be combined into a single linear transfer function, leading to very efficient posterior belief prediction during planning. We give a belief-space variant of the Probabilistic Roadmap algorithm called the Belief Roadmap (BRM) and show that the BRM can compute plans substantially faster than conventional belief space planning. We conclude with performance results for an agent using ultra-wide bandwidth (UWB) radio beacons to localize and show that we can efficiently generate plans that avoid failures due to loss of accurate position estimation.en_US
dc.language.isoen_US
dc.publisherSage Publicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0278364909341659en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.subjectplanning under uncertaintyen_US
dc.subjectmotion planningen_US
dc.subjectprobabilisticen_US
dc.subjectstate estimationen_US
dc.titleThe Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covarianceen_US
dc.typeArticleen_US
dc.identifier.citationPrentice, Samuel, and Nicholas Roy. “The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance.” The International Journal of Robotics Research 28.11-12: 1448 -1465.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverRoy, Nicholas
dc.contributor.mitauthorRoy, Nicholas
dc.contributor.mitauthorPrentice, Samuel James
dc.relation.journalInternational Journal of Robotics Researchen_US
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPrentice, S.; Roy, N.en
dc.identifier.orcidhttps://orcid.org/0000-0002-4959-7368
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record