Show simple item record

dc.contributor.authorChen, Harr
dc.contributor.authorBranavan, Satchuthanan R.
dc.contributor.authorBarzilay, Regina
dc.contributor.authorKarger, David R.
dc.date.accessioned2010-10-14T12:43:57Z
dc.date.available2010-10-14T12:43:57Z
dc.date.issued2009-06
dc.date.submitted2009-05
dc.identifier.isbn978-1-932432-41-1
dc.identifier.urihttp://hdl.handle.net/1721.1/59312
dc.description.abstractWe present a novel Bayesian topic model for learning discourse-level document structure. Our model leverages insights from discourse theory to constrain latent topic assignments in a way that reflects the underlying organization of document topics. We propose a global model in which both topic selection and ordering are biased to be similar across a collection of related documents. We show that this space of orderings can be elegantly represented using a distribution over permutations called the generalized Mallows model. Our structure-aware approach substantially outperforms alternative approaches for cross-document comparison and single-document segmentation.en_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.subjectalgorithmsen_US
dc.subjectdesignen_US
dc.subjectexperimentationen_US
dc.subjectlanguagesen_US
dc.subjectmeasurementen_US
dc.subjectperformanceen_US
dc.titleGlobal models of document structure using latent permutationsen_US
dc.typeArticleen_US
dc.identifier.citationChen, Harr, S.R.K. Branavan, Regina Barzilay, and David R. Karger (2009). "Global models of document structure using latent permutations." Proceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Morristown, N.J.: Association for Computational Linguistics): 371-379. © 2009 Association for Computing Machinery.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverBarzilay, Regina
dc.contributor.mitauthorChen, Harr
dc.contributor.mitauthorBranavan, Satchuthanan R.
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorKarger, David R.
dc.relation.journalProceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguisticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
eprint.grantNumberNational Science Foundation (U.S.) (grant IIS-0448168)en_US
eprint.grantNumberNational Science Foundation (U.S.). Graduate fellowshipen_US
eprint.grantNumberUnited States. Office of Naval Researchen_US
eprint.grantNumberMicrosoft Faculty Fellowshipen_US
dspace.orderedauthorsChen, Harr; Branavan, S. R. K.; Barzilay, Regina; Karger, David R.
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-0024-5847
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record