dc.contributor.author | Chen, Harr | |
dc.contributor.author | Branavan, Satchuthanan R. | |
dc.contributor.author | Barzilay, Regina | |
dc.contributor.author | Karger, David R. | |
dc.date.accessioned | 2010-10-14T12:43:57Z | |
dc.date.available | 2010-10-14T12:43:57Z | |
dc.date.issued | 2009-06 | |
dc.date.submitted | 2009-05 | |
dc.identifier.isbn | 978-1-932432-41-1 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/59312 | |
dc.description.abstract | We present a novel Bayesian topic model for learning discourse-level document structure. Our model leverages insights from discourse theory to constrain latent topic assignments in a way that reflects the underlying organization of document topics. We propose a global model in which both topic selection and ordering are biased to be similar across a collection of related documents. We show that this space of orderings can be elegantly represented using a distribution over permutations called the generalized Mallows model. Our structure-aware approach substantially outperforms alternative approaches for cross-document comparison and single-document segmentation. | en_US |
dc.language.iso | en_US | |
dc.publisher | Association for Computational Linguistics | en_US |
dc.rights | Attribution-Noncommercial-Share Alike 3.0 Unported | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.subject | algorithms | en_US |
dc.subject | design | en_US |
dc.subject | experimentation | en_US |
dc.subject | languages | en_US |
dc.subject | measurement | en_US |
dc.subject | performance | en_US |
dc.title | Global models of document structure using latent permutations | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Chen, Harr, S.R.K. Branavan, Regina Barzilay, and David R. Karger (2009). "Global models of document structure using latent permutations." Proceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Morristown, N.J.: Association for Computational Linguistics): 371-379. © 2009 Association for Computing Machinery. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Barzilay, Regina | |
dc.contributor.mitauthor | Chen, Harr | |
dc.contributor.mitauthor | Branavan, Satchuthanan R. | |
dc.contributor.mitauthor | Barzilay, Regina | |
dc.contributor.mitauthor | Karger, David R. | |
dc.relation.journal | Proceedings of Human Language Technologies: the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
eprint.grantNumber | National Science Foundation (U.S.) (grant IIS-0448168) | en_US |
eprint.grantNumber | National Science Foundation (U.S.). Graduate fellowship | en_US |
eprint.grantNumber | United States. Office of Naval Research | en_US |
eprint.grantNumber | Microsoft Faculty Fellowship | en_US |
dspace.orderedauthors | Chen, Harr; Branavan, S. R. K.; Barzilay, Regina; Karger, David R. | |
dc.identifier.orcid | https://orcid.org/0000-0002-2921-8201 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0024-5847 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |