MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How far can you get with a modern face recognition test set using only simple features?

Author(s)
Pinto, Nicolas; DiCarlo, James; Cox, David D.
Thumbnail
DownloadPinto-2009-How far can you get with a modern face recognition test set using only simple features.pdf (470.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In recent years, large databases of natural images have become increasingly popular in the evaluation of face and object recognition algorithms. However, Pinto et al. previously illustrated an inherent danger in using such sets, showing that an extremely basic recognition system, built on a trivial feature set, was able to take advantage of low-level regularities in popular object and face recognition sets, performing on par with many state-of-the-art systems. Recently, several groups have raised the performance "bar" for these sets, using more advanced classification tools. However, it is difficult to know whether these improvements are due to progress towards solving the core computational problem, or are due to further improvements in the exploitation of low-level regularities. Here, we show that even modest optimization of the simple model introduced by Pinto et al. using modern multiple kernel learning (MKL) techniques once again yields "state-of-the-art" performance levels on a standard face recognition set ("labeled faces in the wild"). However, at the same time, even with the inclusion of MKL techniques, systems based on these simple features still fail on a synthetic face recognition test that includes more "realistic" view variation by design. These results underscore the importance of building test sets focussed on capturing the central computational challenges of real-world face recognition.
Date issued
2009-06
URI
http://hdl.handle.net/1721.1/59976
Department
McGovern Institute for Brain Research at MIT
Journal
IEEE Conference on Computer vision and Pettern Recognition
Publisher
Institute of Electrical and Electronics Engineers
Citation
Pinto, N., J.J. DiCarlo, and D.D. Cox. “How far can you get with a modern face recognition test set using only simple features?.” Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. 2591-2598. © 2009, IEEE
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.