Show simple item record

dc.contributor.authorLashkari, Danial
dc.contributor.authorSridharan, Ramesh
dc.contributor.authorVul, Edward
dc.contributor.authorHsieh, Po-Jang
dc.contributor.authorKanwisher, Nancy
dc.contributor.authorGolland, Polina
dc.date.accessioned2011-04-15T19:57:34Z
dc.date.available2011-04-15T19:57:34Z
dc.date.issued2010-06
dc.identifier.isbn978-1-4244-7029-7
dc.identifier.otherINSPEC Accession Number: 11466679
dc.identifier.urihttp://hdl.handle.net/1721.1/62219
dc.description.abstractWe develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS/CRCNS 0904625) (CAREER grant 0642971)en_US
dc.description.sponsorshipMcGovern Institute for Brain Research at MIT. Neurotechnology (MINT) Programen_US
dc.description.sponsorshipNeuroimaging Analysis Center (U.S.) (Grant NIH NCRR NAC P41-RR13218)en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (Grant NIH NIBIB NAMIC U54-EB005149)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers / IEEE Computer Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPRW.2010.5543434en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleNonparametric hierarchical Bayesian model for functional brain parcellationen_US
dc.typeArticleen_US
dc.identifier.citationKanwisher, N., and P. Golland, with Lashkari, D., R. Sridharan, and E. Vul, Po-Jang Hsieh. “Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.” Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference On. 2010. 15-22. Copyright © 2010, IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.approverGolland, Polina
dc.contributor.mitauthorLashkari, Danial
dc.contributor.mitauthorSridharan, Ramesh
dc.contributor.mitauthorVul, Edward
dc.contributor.mitauthorHsieh, Po-Jang
dc.contributor.mitauthorKanwisher, Nancy
dc.contributor.mitauthorGolland, Polina
dc.relation.journalIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsLashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polinaen
dc.identifier.orcidhttps://orcid.org/0000-0003-3853-7885
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record