MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices

Author(s)
Subbarao, Samuel P.; Bahlke, Matthias Erhard; Kymissis, Ioannis
Thumbnail
DownloadSubbarao-2010-Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices.pdf (300.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present an approach, which is compatible with both glass and polymer substrates, to in-laboratory handling and intra-laboratory shipping of air-sensitive organic semiconductors. Encapsulation approaches are presented using polymer/ceramic and polymer/metal thin-film barriers using commercially available materials and generally available laboratory equipment. A technique for depositing an opaque vapor barrier, a transparent vapor barrier, and an approach to storing and shipping air-sensitive thin-film organic semiconductor devices on both polymer and glass substrates are presented. Barrier performance in air was tested using organic light-emitting diodes (OLEDs) as test devices. The half-life performance of OLEDs on plastic substrates in air exceeded 700 h, and that on glass exceeded 500 h. Commercially available heat-seal barrier bag systems for device shipping and storage in air were tested using a thin film of metallic calcium to test water permeation. More than four months of storage of a metallic calcium film in a heat-sealed foil bag was demonstrated in the best storage system. These approaches allow for the encapsulation of samples for longer duration testing and transportation than otherwise possible.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/62227
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Electron Devices
Publisher
Institute of Electrical and Electronics Engineers
Citation
Subbarao, S.P., M.E. Bahlke, and I. Kymissis. “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices.” Electron Devices, IEEE Transactions On 57.1 (2010) : 153-156. © 2010 IEEE.
Version: Final published version
Other identifiers
INSPEC Accession Number: 11024604
ISSN
0018-9383

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.