MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matching and Predicting Street Level Images

Author(s)
Kaneva, Biliana K.; Sivic, Josef; Torralba, Antonio; Avidan, Shai; Freeman, William T.
Thumbnail
DownloadTorralba_Matching and.pdf (7.720Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The paradigm of matching images to a very large dataset has been used for numerous vision tasks and is a powerful one. If the image dataset is large enough, one can expect to nd good matches of almost any image to the database, allowing label transfer [3, 15], and image editing or enhancement [6, 11]. Users of this approach will want to know how many images are required, and what features to use for nding semantic relevant matches. Furthermore, for navigation tasks or to exploit context, users will want to know the predictive quality of the dataset: can we predict the image that would be seen under changes in camera position? We address these questions in detail for one category of images: street level views. We have a dataset of images taken from an enumeration of positions and viewpoints within Pittsburgh.We evaluate how well we can match those images, using images from non-Pittsburgh cities, and how well we can predict the images that would be seen under changes in cam- era position. We compare performance for these tasks for eight di erent feature sets, nding a feature set that outperforms the others (HOG). A combination of all the features performs better in the prediction task than any individual feature. We used Amazon Mechanical Turk workers to rank the matches and predictions of di erent algorithm conditions by comparing each one to the selection of a random image. This approach can evaluate the e cacy of di erent feature sets and parameter settings for the matching paradigm with other image categories.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/63669
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 11th European Conference on Computer Vision, ECCV 2010
Citation
Kaneva, Biliana et al. "Matching and Predicting Street Level Images." in Proceedings of the 11th European Conference on Computer Vision, ECCV 2010, 5-11 Sept. 2010. Hersonissos, Heraklion, Crete, Greece.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.