Show simple item record

dc.contributor.authorKaneva, Biliana K.
dc.contributor.authorSivic, Josef
dc.contributor.authorTorralba, Antonio
dc.contributor.authorAvidan, Shai
dc.contributor.authorFreeman, William T.
dc.date.accessioned2011-06-09T15:45:37Z
dc.date.available2011-06-09T15:45:37Z
dc.date.issued2010-09
dc.identifier.urihttp://hdl.handle.net/1721.1/63669
dc.description.abstractThe paradigm of matching images to a very large dataset has been used for numerous vision tasks and is a powerful one. If the image dataset is large enough, one can expect to nd good matches of almost any image to the database, allowing label transfer [3, 15], and image editing or enhancement [6, 11]. Users of this approach will want to know how many images are required, and what features to use for nding semantic relevant matches. Furthermore, for navigation tasks or to exploit context, users will want to know the predictive quality of the dataset: can we predict the image that would be seen under changes in camera position? We address these questions in detail for one category of images: street level views. We have a dataset of images taken from an enumeration of positions and viewpoints within Pittsburgh.We evaluate how well we can match those images, using images from non-Pittsburgh cities, and how well we can predict the images that would be seen under changes in cam- era position. We compare performance for these tasks for eight di erent feature sets, nding a feature set that outperforms the others (HOG). A combination of all the features performs better in the prediction task than any individual feature. We used Amazon Mechanical Turk workers to rank the matches and predictions of di erent algorithm conditions by comparing each one to the selection of a random image. This approach can evaluate the e cacy of di erent feature sets and parameter settings for the matching paradigm with other image categories.en_US
dc.description.sponsorshipUnited States. Dept. of Defense (ARDA VACE)en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NEGI-1582-04- 0004)en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (MURI Grant N00014-06-1-0734)en_US
dc.description.sponsorshipFrance. Agence nationale de la recherche (project HFIBMR (ANR-07-BLAN- 0331-01))en_US
dc.description.sponsorshipInstitut national de recherche en informatique et en automatique (France)en_US
dc.description.sponsorshipXerox Fellowship Programen_US
dc.language.isoen_US
dc.relation.isversionofhttp://workshops.acin.tuwien.ac.at/eccv10/Papers/W06.002.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleMatching and Predicting Street Level Imagesen_US
dc.typeArticleen_US
dc.identifier.citationKaneva, Biliana et al. "Matching and Predicting Street Level Images." in Proceedings of the 11th European Conference on Computer Vision, ECCV 2010, 5-11 Sept. 2010. Hersonissos, Heraklion, Crete, Greece.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTorralba, Antonio
dc.contributor.mitauthorTorralba, Antonio
dc.contributor.mitauthorKaneva, Biliana K.
dc.contributor.mitauthorFreeman, William T.
dc.relation.journalProceedings of the 11th European Conference on Computer Vision, ECCV 2010en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsKaneva, Biliana; Sivic, Josef; Torralba, Antonio; Avidan, Shai; Freeman, William T.
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record