Show simple item record

dc.contributor.authorSabuncu, Mert R.
dc.contributor.authorYeo, Boon Thye Thomas
dc.contributor.authorFischl, Bruce
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorGolland, Polina
dc.date.accessioned2011-07-13T18:13:40Z
dc.date.available2011-07-13T18:13:40Z
dc.date.issued2010-09
dc.date.submitted2010-04
dc.identifier.issn0278-0062
dc.identifier.otherINSPEC Accession Number: 11534908
dc.identifier.urihttp://hdl.handle.net/1721.1/64791
dc.description.abstractWe propose a nonparametric, probabilistic model for the automatic segmentation of medical images, given a training set of images and corresponding label maps. The resulting inference algorithms rely on pairwise registrations between the test image and individual training images. The training labels are then transferred to the test image and fused to compute the final segmentation of the test subject. Such label fusion methods have been shown to yield accurate segmentation, since the use of multiple registrations captures greater inter-subject anatomical variability and improves robustness against occasional registration failures. To the best of our knowledge, this manuscript presents the first comprehensive probabilistic framework that rigorously motivates label fusion as a segmentation approach. The proposed framework allows us to compare different label fusion algorithms theoretically and practically. In particular, recent label fusion or multiatlas segmentation algorithms are interpreted as special cases of our framework. We conduct two sets of experiments to validate the proposed methods. In the first set of experiments, we use 39 brain MRI scans - with manually segmented white matter, cerebral cortex, ventricles and subcortical structures - to compare different label fusion algorithms and the widely-used FreeSurfer whole-brain segmentation tool. Our results indicate that the proposed framework yields more accurate segmentation than FreeSurfer and previous label fusion algorithms. In a second experiment, we use brain MRI scans of 282 subjects to demonstrate that the proposed segmentation tool is sufficiently sensitive to robustly detect hippocampal volume changes in a study of aging and Alzheimer's Disease.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (NIH NIBIB NAMIC U54-EB005149)en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (NAC NIH NCRR NAC P41-RR13218)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (mBIRN NIH NCRR mBIRN U24-RR021382)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH NINDS R01-NS051826 grant)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CAREER 0642971 grant)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (P41-RR14075, R01 RR16594-01A1)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550, R01EB006758)en_US
dc.description.sponsorshipNational Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)en_US
dc.description.sponsorshipMind Research Instituteen_US
dc.description.sponsorshipEllison Medical Foundation (Autism and Dyslexia Project)en_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Researchen_US
dc.description.sponsorshipAcademy of Finland (grant number 133611)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/ 10.1109/TMI.2010.2050897en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleA generative model for image segmentation based on label fusionen_US
dc.typeArticleen_US
dc.identifier.citationSabuncu, M.R. et al. “A Generative Model for Image Segmentation Based on Label Fusion.” Medical Imaging, IEEE Transactions On 29.10 (2010) : 1714-1729.© 2010 IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverGolland, Polina
dc.contributor.mitauthorGolland, Polina
dc.contributor.mitauthorVan Leemput, Koen
dc.contributor.mitauthorSabuncu, Mert R.
dc.contributor.mitauthorYeo, Boon Thye Thomas
dc.contributor.mitauthorFischl, Bruce
dc.relation.journalIEEE Transactions on Medical Imaging, 2010en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsSabuncu, Mert R.; Yeo, B. T. Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polinaen
dc.identifier.orcidhttps://orcid.org/0000-0002-5002-1227
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record