In-Silico Patterning of Vascular Mesenchymal Cells in Three Dimensions
Author(s)
Danino, Tal; Volfson, Dmitri; Bhatia, Sangeeta N.; Tsimring, Lev; Hasty, Jeff
DownloadDanino-2011-In-Silico Patterning.pdf (1.743Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Cells organize in complex three-dimensional patterns by interacting with proteins along with the surrounding extracellular matrix. This organization provides the mechanical and chemical cues that ultimately influence a cell's differentiation and function. Here, we computationally investigate the pattern formation process of vascular mesenchymal cells arising from their interaction with Bone Morphogenic Protein-2 (BMP-2) and its inhibitor, Matrix Gla Protein (MGP). Using a first-principles approach, we derive a reaction-diffusion model based on the biochemical interactions of BMP-2, MGP and cells. Simulations of the model exhibit a wide variety of three-dimensional patterns not observed in a two-dimensional analysis. We demonstrate the emergence of three types of patterns: spheres, tubes, and sheets, and show that the patterns can be tuned by modifying parameters in the model such as the degradation rates of proteins and chemotactic coefficient of cells. Our model may be useful for improved engineering of three-dimensional tissue structures as well as for understanding three dimensional microenvironments in developmental processes.
Date issued
2011-05Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
PLoS ONE
Publisher
Public Library of Science
Citation
Danino, Tal et al. “In-Silico Patterning of Vascular Mesenchymal Cells in Three Dimensions.” Ed. Mukund Thattai. PLoS ONE 6 (2011): e20182.
Version: Final published version
ISSN
1932-6203