Show simple item record

dc.contributor.authorVeness, Joel
dc.contributor.authorNg, Kee Siong
dc.contributor.authorHutter, Marcus
dc.contributor.authorUther, William
dc.contributor.authorSilver, David
dc.date.accessioned2011-10-19T18:11:58Z
dc.date.available2011-10-19T18:11:58Z
dc.date.issued2011-01
dc.date.submitted2010-07
dc.identifier.issn1943-5037
dc.identifier.issn1076-9757
dc.identifier.urihttp://hdl.handle.net/1721.1/66495
dc.description.abstractThis paper introduces a principled approach for the design of a scalable general reinforcement learning agent. Our approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a new Monte-Carlo Tree Search algorithm along with an agent-specific extension to the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a variety of stochastic and partially observable domains. We conclude by proposing a number of directions for future research.en_US
dc.description.sponsorshipAustralian Research Council (grant DP0988049)en_US
dc.language.isoen_US
dc.publisherAI Access Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.1613/jair.3125en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJAIRen_US
dc.titleA Monte-Carlo AIXI Approximationen_US
dc.typeArticleen_US
dc.identifier.citationVeness, Joel et al. (2011) "A Monte-Carlo AIXI Approximation", Journal of Artificial Intelligence Research (2011) Volume 40, pages 95-142. © 2011 AI Access Foundationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.approverSilver, David
dc.contributor.mitauthorSilver, David
dc.relation.journalJournal of Artificial Intelligence Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVeness, Joel; Ng, Kee Siong; Hutter, Marcus; Uther, William; Silver, David
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record