MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Effect of Electrostatic Screening on a Nanometer Scale Electrometer

Author(s)
MacLean, Kenneth; Mentzel, Tamar; Kastner, Marc
Thumbnail
DownloadKastner2.pdf (258.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We investigate the effect of electrostatic screening on a nanoscale silicon MOSFET electrometer. We find that screening by the lightly doped p-type substrate, on which the MOSFET is fabricated, significantly affects the sensitivity of the device. We are able to tune the rate and magnitude of the screening effect by varying the temperature and the voltages applied to the device, respectively. We show that despite this screening effect, the electrometer is still very sensitive to its electrostatic environment, even at room temperature.
Date issued
2010-12
URI
http://hdl.handle.net/1721.1/67690
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nano Letters
Publisher
American Chemical Society
Citation
MacLean, Kenneth, Tamar S. Mentzel, and Marc A. Kastner. “The Effect of Electrostatic Screening on a Nanometer Scale Electrometer.” Nano Letters 11.1 (2011): 30-34.
Version: Author's final manuscript
ISSN
1530-6984

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.