Show simple item record

dc.contributor.authorNepf, Heidi
dc.contributor.authorGhisalberti, Marco
dc.contributor.authorWhite, B.
dc.contributor.authorMurphy, E.
dc.date.accessioned2012-01-06T16:59:12Z
dc.date.available2012-01-06T16:59:12Z
dc.date.issued2007-04
dc.date.submitted2006-11
dc.identifier.issn0043-1397
dc.identifier.otherW04422
dc.identifier.urihttp://hdl.handle.net/1721.1/68012
dc.description.abstractThe shear layer at the top of a submerged canopy generates coherent vortices that control exchange between the canopy and the overflowing water. Unlike free shear layers, the vortices in a canopy shear layer do not grow continuously downstream but reach and maintain a finite scale determined by a balance between shear production and canopy dissipation. This balance defines the length scale of vortex penetration into the canopy, δ e , and the region of rapid exchange between the canopy and overflow. Deeper within the canopy, transport is constrained by smaller turbulence scales. A two-box canopy model is proposed on the basis of the length scale δ e . Using diffusivity and exchange rates defined in previous studies, the model predicts the timescale required to flush the canopy through vertical exchange over a range of canopy density and height. The predicted canopy retention times, which range from minutes to an hour, are consistent with canopy retention inferred from tracer observations in the field and comparable to retention times for some hyporheic regions. The timescale for vertical exchange, along with the in-canopy velocity, determines the minimum canopy length for which vertical exchange dominates water renewal. Shorter canopies renew interior water through longitudinal advection. Finally, canopy water retention influences longitudinal dispersion through a transient storage process. When vertical exchange controls canopy retention, the transient storage dispersion increases with canopy height. When longitudinal advection controls water renewal, dispersion increases with canopy patch length.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant EAR0309188)en_US
dc.language.isoen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.1029/2006WR005362en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Nepfen_US
dc.titleRetention time and dispersion associated with submerged aquatic canopiesen_US
dc.typeArticleen_US
dc.identifier.citationNepf, H. et al. “Retention time and dispersion associated with submerged aquatic canopies.” Water Resources Research 43.4 (2007): p. 1-10.©2007 American Geophysical Union.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverNepf, Heidi
dc.contributor.mitauthorNepf, Heidi
dc.contributor.mitauthorMurphy, E.
dc.relation.journalWater Resources Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNepf, H.; Ghisalberti, M.; White, B.; Murphy, E.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record