dc.contributor.author | Duplantier, Bertrand | |
dc.contributor.author | Sheffield, Scott Roger | |
dc.date.accessioned | 2012-01-27T19:42:54Z | |
dc.date.available | 2012-01-27T19:42:54Z | |
dc.date.issued | 2011-09 | |
dc.date.submitted | 2011-06 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issn | 1079-7114 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/68685 | |
dc.description.abstract | We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself. | en_US |
dc.description.sponsorship | French National Research Agency (ANR) (Grant No. ANR-08-BLAN-0311-CSD5) | en_US |
dc.description.sponsorship | Institut national des sciences de l'univers (France) (Grant No. CNRS-PEPS-PTI 2010) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant No. DMS 0403182/064558) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant No. OISE 0730136) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Physical Society (APS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevLett.107.131305 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | APS | en_US |
dc.title | Schramm-Loewner Evolution and Liouville Quantum Gravity | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Duplantier, Bertrand, and Scott Sheffield. “Schramm-Loewner Evolution and Liouville Quantum Gravity.” Physical Review Letters 107.13 (2011): n. pag. Web. 27 Jan. 2012. © 2011 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Sheffield, Scott Roger | |
dc.contributor.mitauthor | Sheffield, Scott Roger | |
dc.relation.journal | Physical Review Letters | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Duplantier, Bertrand; Sheffield, Scott | en |
dc.identifier.orcid | https://orcid.org/0000-0002-5951-4933 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |