MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hot nanoindentation in inert environments

Author(s)
Trenkle, Jonathan C.; Packard, Corinne E.; Schuh, Christopher A.
Thumbnail
DownloadTrenkle et al Apr 23.pdf (1.368Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
An instrument capable of performing nanoindentation at temperatures up to 500 °C in inert atmospheres, including partial vacuum and gas near atmospheric pressures, is described. Technical issues associated with the technique (such as drift and noise) and the instrument (such as tip erosion and radiative heating of the transducer) are identified and addressed. Based on these considerations, preferred operation conditions are identified for testing on various materials. As a proof-of-concept demonstration, the hardness and elastic modulus of three materials are measured: fused silica (nonoxidizing), aluminum, and copper (both oxidizing). In all cases, the properties match reasonably well with published data acquired by more conventional test methods.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/69648
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Review of Scientific Instruments
Publisher
American Institute of Physics
Citation
Trenkle, Jonathan C., Corinne E. Packard, and Christopher A. Schuh. “Hot Nanoindentation in Inert Environments.” Review of Scientific Instruments 81.7 (2010): 073901.
Version: Author's final manuscript
ISSN
0034-6748

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.