MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noisy Data and Impulse Response Estimation

Author(s)
Beheshti, Soosan; Dahleh, Munther A.
Thumbnail
DownloadBeheshti-2010-Noisy Data and Impulse Response Estimation.pdf (584.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper investigates the impulse response estimation of linear time-invariant (LTI) systems when only noisy finite-length input-output data of the system is available. The competing parametric candidates are the least square impulse response estimates of possibly different lengths. It is known that the presence of noise prohibits using model sets with large number of parameters as the resulting parameter estimation error can be quite large. Model selection methods acknowledge this problem, hence, they provide metrics to compare estimates in different model classes. Such metrics typically involve a combination of the available least-square output error, which decreases as the number of parameters increases, and a function that penalizes the size of the model. In this paper, we approach the model class selection problem from a different perspective that is closely related to the involved denoising problem. The method primarily focuses on estimating the parameter error in a given model class of finite order using the available least-square output error. We show that such an estimate, which is provided in terms of upper and lower bounds with certain level of confidence, contains the appropriate tradeoffs between the bias and variance of the estimation error. Consequently, these measures can be used as the basis for model comparison and model selection. Furthermore, we demonstrate how this approach reduces to the celebrated AIC method for a specific confidence level. The performance of the method as the noise variance and/or the data length varies is explored, and consistency of the approach as the data length grows is analyzed.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/69891
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Signal Processing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Beheshti, S., and M.A. Dahleh. “Noisy Data and Impulse Response Estimation.” IEEE Transactions on Signal Processing 58.2 (2010): 510–521. Web. 30 Mar. 2012. © 2010 Institute of Electrical and Electronics Engineers
Version: Final published version
Other identifiers
INSPEC Accession Number: 11054884
ISSN
1053-587X
1941-0476

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.