MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new proof of the graph removal lemma

Author(s)
Fox, Jacob
Thumbnail
DownloadFox_A New.pdf (143.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n[superscript h]) copies of H can be made H-free by removing o(n[superscript 2]) edges. We give a new proof which avoids Szemerédi’s regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.
Date issued
2012-04
URI
http://hdl.handle.net/1721.1/70095
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Annals of Mathematics, Princeton University
Citation
Fox, Jacob. “A New Proof of the Graph Removal Lemma.” Annals of Mathematics 174.1 (2011): 561–579. Web. 20 Apr. 2012. © 2012 Annals of Mathematics
Version: Author's final manuscript
ISSN
0003-486X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.