dc.contributor.author | Fox, Jacob | |
dc.date.accessioned | 2012-04-20T21:15:39Z | |
dc.date.available | 2012-04-20T21:15:39Z | |
dc.date.issued | 2012-04 | |
dc.date.submitted | 2010-06 | |
dc.identifier.issn | 0003-486X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/70095 | |
dc.description.abstract | Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n[superscript h]) copies of H can be made H-free by removing o(n[superscript 2]) edges. We give a new proof which avoids Szemerédi’s regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers. | en_US |
dc.language.iso | en_US | |
dc.publisher | Annals of Mathematics, Princeton University | en_US |
dc.relation.isversionof | http://dx.doi.org/10.4007/annals.2011.174.1.17 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | A new proof of the graph removal lemma | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fox, Jacob. “A New Proof of the Graph Removal Lemma.” Annals of Mathematics 174.1 (2011): 561–579. Web. 20 Apr. 2012. © 2012 Annals of Mathematics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Fox, Jacob | |
dc.contributor.mitauthor | Fox, Jacob | |
dc.relation.journal | Annals of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Fox, Jacob | en |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |