Show simple item record

dc.contributor.authorFox, Jacob
dc.date.accessioned2012-04-20T21:15:39Z
dc.date.available2012-04-20T21:15:39Z
dc.date.issued2012-04
dc.date.submitted2010-06
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/70095
dc.description.abstractLet H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n[superscript h]) copies of H can be made H-free by removing o(n[superscript 2]) edges. We give a new proof which avoids Szemerédi’s regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.en_US
dc.language.isoen_US
dc.publisherAnnals of Mathematics, Princeton Universityen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/annals.2011.174.1.17en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleA new proof of the graph removal lemmaen_US
dc.typeArticleen_US
dc.identifier.citationFox, Jacob. “A New Proof of the Graph Removal Lemma.” Annals of Mathematics 174.1 (2011): 561–579. Web. 20 Apr. 2012. © 2012 Annals of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverFox, Jacob
dc.contributor.mitauthorFox, Jacob
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFox, Jacoben
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record