MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Khovanov homology is an unknot-detector

Author(s)
Kronheimer, P. B.; Mrowka, Tomasz S.
Thumbnail
DownloadMrowka_Khovanov homology (arxiv).pdf (1.093Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/70474
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Publications Mathématiques de L'IHÉS
Publisher
Springer-Verlag
Citation
Kronheimer, P. B., and T. S. Mrowka. “Khovanov Homology Is an Unknot-detector.” Publications mathématiques de l’IHÉS 113.1 (2011): 97–208. Web. 27 Apr. 2012. © 2011 IHES and Springer-Verlag
Version: Author's final manuscript
ISSN
0073-8301
1618-1913

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.