Show simple item record

dc.contributor.authorKronheimer, P. B.
dc.contributor.authorMrowka, Tomasz S.
dc.date.accessioned2012-04-27T22:04:24Z
dc.date.available2012-04-27T22:04:24Z
dc.date.issued2011-11
dc.identifier.issn0073-8301
dc.identifier.issn1618-1913
dc.identifier.urihttp://hdl.handle.net/1721.1/70474
dc.description.abstractWe prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10240-010-0030-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleKhovanov homology is an unknot-detectoren_US
dc.typeArticleen_US
dc.identifier.citationKronheimer, P. B., and T. S. Mrowka. “Khovanov Homology Is an Unknot-detector.” Publications mathématiques de l’IHÉS 113.1 (2011): 97–208. Web. 27 Apr. 2012. © 2011 IHES and Springer-Verlagen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverMrowka, Tomasz S.
dc.contributor.mitauthorMrowka, Tomasz S.
dc.relation.journalPublications Mathématiques de L'IHÉSen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKronheimer, P. B.; Mrowka, T. S.en
dc.identifier.orcidhttps://orcid.org/0000-0001-9520-6535
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record