MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlations

Author(s)
Wu, Jianlan; Liu, Fan; Shen, Young; Cao, Jianshu; Silbey, Robert J.
Thumbnail
DownloadWu-2010-Efficient energy transfer in light-harvesting systems.pdf (789.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna–Matthews–Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken–Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. To avoid the infinite temperature assumption in the Haken–Strobl model and the failure of the Redfield equation in predicting the Forster rate behavior, we use the generalized Bloch–Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics, and we find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy and spatial–temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/70851
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
New Journal of Physics
Publisher
Institute of Physics Publishing
Citation
Wu, Jianlan et al. “Efficient Energy Transfer in Light-harvesting Systems, I: Optimal Temperature, Reorganization Energy and Spatial–temporal Correlations.” New Journal of Physics 12.10 (2010): 105012. Web.
Version: Final published version
ISSN
1367-2630

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.