Show simple item record

dc.contributor.authorWu, Jianlan
dc.contributor.authorLiu, Fan
dc.contributor.authorShen, Young
dc.contributor.authorCao, Jianshu
dc.contributor.authorSilbey, Robert J.
dc.date.accessioned2012-05-16T19:27:15Z
dc.date.available2012-05-16T19:27:15Z
dc.date.issued2010-10
dc.date.submitted2010-02
dc.identifier.issn1367-2630
dc.identifier.urihttp://hdl.handle.net/1721.1/70851
dc.description.abstractUnderstanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna–Matthews–Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken–Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. To avoid the infinite temperature assumption in the Haken–Strobl model and the failure of the Redfield equation in predicting the Forster rate behavior, we use the generalized Bloch–Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics, and we find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy and spatial–temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF 0806266)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 0556268)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Energy Initiative (Seed grant)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (DOE grant number DE-SC0001088)en_US
dc.language.isoen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1367-2630/12/10/105012en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceNew Journal of Physicsen_US
dc.titleEfficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlationsen_US
dc.typeArticleen_US
dc.identifier.citationWu, Jianlan et al. “Efficient Energy Transfer in Light-harvesting Systems, I: Optimal Temperature, Reorganization Energy and Spatial–temporal Correlations.” New Journal of Physics 12.10 (2010): 105012. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverSilbey, Robert J.
dc.contributor.mitauthorWu, Jianlan
dc.contributor.mitauthorLiu, Fan
dc.contributor.mitauthorCao, Jianshu
dc.contributor.mitauthorShen, Young
dc.contributor.mitauthorSilbey, Robert J.
dc.relation.journalNew Journal of Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWu, Jianlan; Liu, Fan; Shen, Young; Cao, Jianshu; Silbey, Robert Jen
dc.identifier.orcidhttps://orcid.org/0000-0001-7616-7809
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record