Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
Author(s)
Desikan, Rahul S.; Cabral, Howard J.; Hess, Christopher P.; Dillon, William P.; Glastonbury, Christine M.; Weiner, Michael W.; Schmansky, Nicholas J.; Greve, Douglas N.; Salat, David H.; Buckner, Randy L.; Fischl, Bruce; ... Show more Show less
DownloadDesikan-2009-Automated MRI measures identify individuals with mild cognitive impairment.pdf (613.2Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Mild cognitive impairment can represent a transitional state between normal ageing and Alzheimer's disease. Non-invasive diagnostic methods are needed to identify mild cognitive impairment individuals for early therapeutic interventions. Our objective was to determine whether automated magnetic resonance imaging-based measures could identify mild cognitive impairment individuals with a high degree of accuracy. Baseline volumetric T1-weighted magnetic resonance imaging scans of 313 individuals from two independent cohorts were examined using automated software tools to identify the volume and mean thickness of 34 neuroanatomic regions. The first cohort included 49 older controls and 48 individuals with mild cognitive impairment, while the second cohort included 94 older controls and 57 mild cognitive impairment individuals. Sixty-five patients with probable Alzheimer's disease were also included for comparison. For the discrimination of mild cognitive impairment, entorhinal cortex thickness, hippocampal volume and supramarginal gyrus thickness demonstrated an area under the curve of 0.91 (specificity 94%, sensitivity 74%, positive likelihood ratio 12.12, negative likelihood ratio 0.29) for the first cohort and an area under the curve of 0.95 (specificity 91%, sensitivity 90%, positive likelihood ratio 10.0, negative likelihood ratio 0.11) for the second cohort. For the discrimination of Alzheimer's disease, these three measures demonstrated an area under the curve of 1.0. The three magnetic resonance imaging measures demonstrated significant correlations with clinical and neuropsychological assessments as well as with cerebrospinal fluid levels of tau, hyperphosphorylated tau and abeta 42 proteins. These results demonstrate that automated magnetic resonance imaging measures can serve as an in vivo surrogate for disease severity, underlying neuropathology and as a non-invasive diagnostic method for mild cognitive impairment and Alzheimer's disease.
Date issued
2009-05Department
move to dc.description.sponsorship; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence LaboratoryJournal
Brain
Publisher
Oxford University Press (OUP)
Citation
Desikan, R. S. et al. “Automated MRI Measures Identify Individuals with Mild Cognitive Impairment and Alzheimer’s Disease.” Brain 132.8 (2009): 2048–2057. Web. 25 May 2012.
Version: Final published version
ISSN
0006-8950
1460-2156