Show simple item record

dc.contributor.authorUllman, Tomer David
dc.contributor.authorGoodman, Noah D.
dc.contributor.authorTenenbaum, Joshua B.
dc.date.accessioned2012-06-28T15:37:06Z
dc.date.available2012-06-28T15:37:06Z
dc.date.issued2010-08
dc.identifier.urihttp://hdl.handle.net/1721.1/71254
dc.description.abstractWe present an algorithmic model for the development of children’s intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. Our algorithm performs stochastic search at two levels of abstraction – an outer loop in the space of theories, and an inner loop in the space of explanations or models generated by each theory given a particular dataset – in order to discover the theory that best explains the observed data. We show that this model is capable of learning correct theories in several everyday domains, and discuss the dynamics of learning in the context of children’s cognitive development.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR (FA9550-07-1-0075)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR (N00014-09-0124)en_US
dc.description.sponsorshipJames S. McDonnell Foundation (Causal Learning Collaborative Initiative)en_US
dc.language.isoen_US
dc.publisherCognitive Science Society, Inc.en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Tenenbaumen_US
dc.titleTheory Acquisition as Stochastic Searchen_US
dc.typeArticleen_US
dc.identifier.citationUllman, Tomer D., Noah D. Goodman and Joshua B. Tenenbaum. "Theory Acquisition as Stochastic Search." in Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, COGSCI 2010, Portland, Oregon, August 11-14, 2010.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverTenenbaum, Joshua B.
dc.contributor.mitauthorUllman, Tomer David
dc.contributor.mitauthorGoodman, Noah D.
dc.contributor.mitauthorTenenbaum, Joshua B.
dc.relation.journalProceedings of the Thirty-Second Annual Conference of the Cognitive Science Society (CogSci 2010)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsUllman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dc.identifier.orcidhttps://orcid.org/0000-0003-1722-2382
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record