dc.contributor.author | Jerison, David S. | |
dc.contributor.author | Levine, Lionel | |
dc.contributor.author | Sheffield, Scott Roger | |
dc.date.accessioned | 2012-07-03T12:39:01Z | |
dc.date.available | 2012-07-03T12:39:01Z | |
dc.date.issued | 2011-08 | |
dc.date.submitted | 2011-07 | |
dc.identifier.issn | 0894-0347 | |
dc.identifier.issn | 1088-6834 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/71522 | |
dc.description.abstract | Let each of [superscript n] particles starting at the origin in Z[superscript 2] perform simple random walk until reaching a site with no other particles. Lawler, Bramson, and Griffeath proved that the resulting random set A(n) of [superscript n] occupied sites is (with high probability) close to a disk B [subscript r] of radius r=√n/pi. We show that the discrepancy between A(n) and the disk is at most logarithmic in the radius: i.e., there is an absolute constant [superscript C] such that with probability [superscript 1], B [subscript r - C log r] C A(pi r[superscript 2]) C B [subscript r+ C log r] for all sufficiently large r. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMS-1069225) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMS-0645585) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Postdoctoral Research Fellowship) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Mathematical Society (AMS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/s0894-0347-2011-00716-9 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Logarithmic Fluctuations for Internal DLA | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Jerison, David, Lionel Levine, and Scott Sheffield. “Logarithmic Fluctuations for Internal DLA.” Journal of the American Mathematical Society 25.1 (2011). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Jerison, David S. | |
dc.contributor.mitauthor | Jerison, David S. | |
dc.contributor.mitauthor | Levine, Lionel | |
dc.contributor.mitauthor | Sheffield, Scott Roger | |
dc.relation.journal | Journal of the American Mathematical Society | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Jerison, David; Levine, Lionel; Sheffield, Scott | en |
dc.identifier.orcid | https://orcid.org/0000-0002-5951-4933 | |
dc.identifier.orcid | https://orcid.org/0000-0002-9357-7524 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |