Show simple item record

dc.contributor.authorKedlaya, Kiran S.
dc.contributor.authorUmans, Christopher
dc.date.accessioned2012-07-24T20:22:30Z
dc.date.available2012-07-24T20:22:30Z
dc.date.issued2011-12
dc.date.submitted2008-09
dc.identifier.issn0097-5397
dc.identifier.issn1095-7111
dc.identifier.urihttp://hdl.handle.net/1721.1/71792
dc.description.abstractWe obtain randomized algorithms for factoring degree n univariate polynomials over $\mathbb{F}_q$ requiring $O(n^{1.5 + o(1)}\,{\rm log}^{1+o(1)} q+ n^{1 + o(1)}\,{\rm log}^{2+o(1)} q)$ bit operations. When ${\rm log}\, q < n$, this is asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput. Complexity, 2 (1992), pp. 187–224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179–1197]; for ${\rm log}\, q \ge n$, it matches the asymptotic running time of the best known algorithms. The improvements come from new algorithms for modular composition of degree n univariate polynomials, which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite fields. The best previous algorithms for modular composition use $O(n^{(\omega + 1)/2})$ field operations, where $\omega$ is the exponent of matrix multiplication [R. P. Brent and H. T. Kung, J. Assoc. Comput. Mach., 25 (1978), pp. 581–595], with a slight improvement in the exponent achieved by employing fast rectangular matrix multiplication [X. Huang and V. Y. Pan, J. Complexity, 14 (1998), pp. 257–299]. We show that modular composition and multipoint evaluation of multivariate polynomials are essentially equivalent, in the sense that an algorithm for one achieving exponent $\alpha$ implies an algorithm for the other with exponent $\alpha + o(1)$, and vice versa. We then give two new algorithms that solve the problem near-optimally: an algebraic algorithm for fields of characteristic at most $n^{o(1)}$, and a nonalgebraic algorithm that works in arbitrary characteristic. The latter algorithm works by lifting to characteristic 0, applying a small number of rounds of multimodular reduction, and finishing with a small number of multidimensional FFTs. The final evaluations are reconstructed using the Chinese remainder theorem. As a bonus, this algorithm produces a very efficient data structure supporting polynomial evaluation queries, which is of independent interest. Our algorithms use techniques that are commonly employed in practice, in contrast to all previous subquadratic algorithms for these problems, which relied on fast matrix multiplication.en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/08073408xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleFast Polynomial Factorization and Modular Compositionen_US
dc.typeArticleen_US
dc.identifier.citationCopyright © 2011 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverKedlaya, Kiran S.
dc.contributor.mitauthorKedlaya, Kiran S.
dc.relation.journalSIAM Journal on Computingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKedlaya, Kiran S.; Umans, Christopheren
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record