Show simple item record

dc.contributor.authorHasinoff, Samuel W.
dc.contributor.authorDurand, Fredo
dc.contributor.authorFreeman, William T.
dc.date.accessioned2012-07-30T18:01:07Z
dc.date.available2012-07-30T18:01:07Z
dc.date.issued2010-08
dc.date.submitted2010-06
dc.identifier.isbn978-1-4244-6984-0
dc.identifier.issn1063-6919
dc.identifier.urihttp://hdl.handle.net/1721.1/71893
dc.description.abstractTaking multiple exposures is a well-established approach both for capturing high dynamic range (HDR) scenes and for noise reduction. But what is the optimal set of photos to capture? The typical approach to HDR capture uses a set of photos with geometrically-spaced exposure times, at a fixed ISO setting (typically ISO 100 or 200). By contrast, we show that the capture sequence with optimal worst-case performance, in general, uses much higher and variable ISO settings, and spends longer capturing the dark parts of the scene. Based on a detailed model of noise, we show that optimal capture can be formulated as a mixed integer programming problem. Compared to typical HDR capture, our method lets us achieve higher worst-case SNR in the same capture time (for some cameras, up to 19 dB improvement in the darkest regions), or much faster capture for the same minimum acceptable level of SNR. Our experiments demonstrate this advantage for both real and synthetic scenes.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC). Postdoctoral Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Career Award (0447561)en_US
dc.description.sponsorshipQuanta Computer (Firm)en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)en_US
dc.description.sponsorshipUnited States. Army Research Office. Multidisciplinary University Research Initiative (Grant Number N00014-06-1-0734)en_US
dc.description.sponsorshipMicrosoft Corporationen_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.description.sponsorshipAdobe Systemsen_US
dc.description.sponsorshipAlfred P. Sloan Foundation. Fellowshipen_US
dc.description.sponsorshipMicrosoft Research. New Faculty Fellowshipen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/ 10.1109/CVPR.2010.5540167en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleNoise-optimal capture for high dynamic range photographyen_US
dc.typeArticleen_US
dc.identifier.citationHasinoff, Samuel W., Fredo Durand, and William T. Freeman. “Noise-optimal Capture for High Dynamic Range Photography.” IEEE, 2010. 553–560. © Copyright 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDurand, Fredo
dc.contributor.mitauthorHasinoff, Samuel W.
dc.contributor.mitauthorDurand, Fredo
dc.contributor.mitauthorFreeman, William T.
dc.relation.journal2010 IEEE Conference on Computer Vision and Pattern Recognitionen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsHasinoff, Samuel W.; Durand, Fredo; Freeman, William T.en
dc.identifier.orcidhttps://orcid.org/0000-0001-9919-069X
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record