MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalar quantization with random thresholds

Author(s)
Goyal, Vivek K.
Thumbnail
DownloadGoyal_Scalar Quantization.pdf (200.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The distortion-rate performance of certain randomly-designed scalar quantizers is determined. The central results are the mean-squared error distortion and output entropy for quantizing a uniform random variable with thresholds drawn independently from a uniform distribution. The distortion is at most six times that of an optimal (deterministically-designed) quantizer, and for a large number of levels the output entropy is reduced by approximately (1-γ)/(ln 2) bits, where γ is the Euler-Mascheroni constant. This shows that the high-rate asymptotic distortion of these quantizers in an entropy-constrained context is worse than the optimal quantizer by at most a factor of 6e[superscript -2(1-γ)] ≈ 2.58.
Date issued
2011-07
URI
http://hdl.handle.net/1721.1/71923
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Signal Processing Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Goyal, Vivek K. “Scalar Quantization With Random Thresholds.” IEEE Signal Processing Letters 18.9 (2011): 525–528.
Version: Author's final manuscript
ISSN
1070-9908

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.