Show simple item record

dc.contributor.authorGoyal, Vivek K.
dc.date.accessioned2012-07-31T20:06:26Z
dc.date.available2012-07-31T20:06:26Z
dc.date.issued2011-07
dc.identifier.issn1070-9908
dc.identifier.urihttp://hdl.handle.net/1721.1/71923
dc.description.abstractThe distortion-rate performance of certain randomly-designed scalar quantizers is determined. The central results are the mean-squared error distortion and output entropy for quantizing a uniform random variable with thresholds drawn independently from a uniform distribution. The distortion is at most six times that of an optimal (deterministically-designed) quantizer, and for a large number of levels the output entropy is reduced by approximately (1-γ)/(ln 2) bits, where γ is the Euler-Mascheroni constant. This shows that the high-rate asymptotic distortion of these quantizers in an entropy-constrained context is worse than the optimal quantizer by at most a factor of 6e[superscript -2(1-γ)] ≈ 2.58.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/LSP.2011.2161867en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleScalar quantization with random thresholdsen_US
dc.typeArticleen_US
dc.identifier.citationGoyal, Vivek K. “Scalar Quantization With Random Thresholds.” IEEE Signal Processing Letters 18.9 (2011): 525–528.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverGoyal, Vivek K.
dc.contributor.mitauthorGoyal, Vivek K.
dc.relation.journalIEEE Signal Processing Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsGoyal, Vivek Ken
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record