MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approaching the theoretical limits of a mesh NoC with a 16-node chip prototype in 45nm SOI

Author(s)
Park, Sunghyun; Krishna, Tushar; Chen, Chia-Hsin; Daya, Bhavya Kishor; Chandrakasan, Anantha P.; Peh, Li-Shiuan; ... Show more Show less
Thumbnail
DownloadPeh_Approaching the theoretical.pdf (1.330Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In this paper, we present a case study of our chip prototype of a 16-node 4x4 mesh NoC fabricated in 45nm SOI CMOS that aims to simultaneously optimize energy-latency-throughput for unicasts, multicasts and broadcasts. We first define and analyze the theoretical limits of a mesh NoC in latency, throughput and energy, then describe how we approach these limits through a combination of microarchitecture and circuit techniques. Our 1.1V 1GHz NoC chip achieves 1-cycle router-and-link latency at each hop and energy-efficient router-level multicast support, delivering 892Gb/s (87.1% of the theoretical bandwidth limit) at 531.4mW for a mixed traffic of unicasts and broadcasts. Through this fabrication, we derive insights that help guide our research, and we believe, will also be useful to the NoC and multicore research community.
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/72477
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 49th Annual Design Automation Conference (DAC '12)
Publisher
Association for Computing Machinery (ACM)
Citation
Sunghyun Park, Tushar Krishna, Chia-Hsin Chen, Bhavya Daya, Anantha Chandrakasan, and Li-Shiuan Peh. 2012. Approaching the theoretical limits of a mesh NoC with a 16-node chip prototype in 45nm SOI. In Proceedings of the 49th Annual Design Automation Conference (DAC '12). ACM, New York, NY, USA, 398-405.
Version: Author's final manuscript
ISBN
978-1-4503-1199-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.