MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Post-Processing Methods for Jitter Mitigation in Sampling

Author(s)
Weller, Daniel Stuart; Goyal, Vivek K.
Thumbnail
DownloadGoyal_Bayesian post-processing.pdf (656.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Minimum mean-square error (MMSE) estimators of signals from samples corrupted by jitter (timing noise) and additive noise are nonlinear, even when the signal parameters and additive noise have normal distributions. This paper develops a stochastic algorithm based on Gibbs sampling and slice sampling to approximate the optimal MMSE estimator in this Bayesian formulation. Simulations demonstrate that this nonlinear algorithm can improve significantly upon the linear MMSE estimator, as well as the EM algorithm approximation to the maximum likelihood (ML) estimator used in classical estimation. Effective off-chip postprocessing to mitigate jitter enables greater jitter to be tolerated, potentially reducing on-chip ADC power consumption.
Date issued
2011-01
URI
http://hdl.handle.net/1721.1/72601
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Transactions on Signal Processing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Weller, Daniel S., and Vivek K Goyal. “Bayesian Post-Processing Methods for Jitter Mitigation in Sampling.” IEEE Transactions on Signal Processing 59.5 (2011): 2112–2123.
Version: Author's final manuscript
ISSN
1053-587X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.