Show simple item record

dc.contributor.authorBow, Hansen
dc.contributor.authorPivkin, Igor V.
dc.contributor.authorDiez Silva, Monica
dc.contributor.authorGoldfless, Stephen Jacob
dc.contributor.authorDao, Ming
dc.contributor.authorNiles, Jacquin
dc.contributor.authorSuresh, Subra
dc.contributor.authorHan, Jongyoon
dc.date.accessioned2012-09-21T16:00:29Z
dc.date.available2012-09-21T16:00:29Z
dc.date.issued2011-02
dc.date.submitted2010-10
dc.identifier.issn1473-0197
dc.identifier.issn1473-0189
dc.identifier.urihttp://hdl.handle.net/1721.1/73098
dc.description.abstractMalaria resulting from Plasmodium falciparum infection is a major cause of human suffering and mortality. Red blood cell (RBC) deformability plays a major role in the pathogenesis of malaria. Here we introduce an automated microfabricated “deformability cytometer” that measures dynamic mechanical responses of 10[superscript 3] to 10[superscript 4] individual RBCs in a cell population. Fluorescence measurements of each RBC are simultaneously acquired, resulting in a population-based correlation between biochemical properties, such as cell surface markers, and dynamic mechanical deformability. This device is especially applicable to heterogeneous cell populations. We demonstrate its ability to mechanically characterize a small number of P. falciparum-infected (ring stage) RBCs in a large population of uninfected RBCs. Furthermore, we are able to infer quantitative mechanical properties of individual RBCs from the observed dynamic behavior through a dissipative particle dynamics (DPD) model. These methods collectively provide a systematic approach to characterize the biomechanical properties of cells in a high-throughput manner.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 HL094270-01A1)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1-R01-GM076689-01)en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Centeren_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c0lc00472cen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleA microfabricated deformability-based flow cytometer with application to malariaen_US
dc.typeArticleen_US
dc.identifier.citationBow, Hansen et al. “A Microfabricated Deformability-based Flow Cytometer with Application to Malaria.” Lab on a Chip 11.6 (2011): 1065.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorBow, Hansen
dc.contributor.mitauthorPivkin, Igor V.
dc.contributor.mitauthorDiez Silva, Monica
dc.contributor.mitauthorGoldfless, Stephen Jacob
dc.contributor.mitauthorDao, Ming
dc.contributor.mitauthorNiles, Jacquin
dc.contributor.mitauthorSuresh, Subra
dc.contributor.mitauthorHan, Jongyoon
dc.relation.journalLab on a Chipen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBow, Hansen; Pivkin, Igor V.; Diez-Silva, Monica; Goldfless, Stephen J.; Dao, Ming; Niles, Jacquin C.; Suresh, Subra; Han, Jongyoonen
dc.identifier.orcidhttps://orcid.org/0000-0002-6223-6831
dc.identifier.orcidhttps://orcid.org/0000-0001-7215-1439
dc.identifier.orcidhttps://orcid.org/0000-0002-6250-8796
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record